趋势3 -- 大量通过众包获取数据
所有的AI公司都会追求大数据,然后找寻方式方法来实现他们自己的AI目标。这些公司都会开始采用众包(Crowdsource, 众包,个人或组织可以利用大量的网络用户来获取需要的服务和想法)的方法来获取数据。很多公司已经找到众包获取数据的不同方法,这些方法不仅可以让公司获益,还可以提供给消费者一个表达观点的渠道。
Joel Gurin是OpenDataNow.com的创始人和编辑,他表示,“我们生活在众包的文化中,越来越多人愿意并且有兴趣通过社交网站分享他们知道的事。”
Google通过众包获得大量图片数据,并利用这些数据开发他们的图片算法。Google还开发了一个众包app用来提升他们推出的其他服务,比如翻译,转录,手写识别和地图。Amazon也采用众包人工智能的方法来提高Alexa的技能。相关技能的数量超过了1万5千个。
趋势4 -- 并购和更多的并购
CBInsights有统计数据显示,收购AI公司的竞赛已经开始/ 2018年将是当公司竞争智力资本和人才时产生越来越多的兼并和收购的一年。机器学习/ AI空间中的所有较小的玩家将被大型公司收购。有两个原因:
1. AI不能在没有数据集的情况下孤立工作。由于较大的公司拥有大量的数据集,所以对于较小的企业来说,这些数据将具有非常大的竞争力。
2. 没有数据的算法没有任何用处。没有算法,数据几乎没有用。数据是算法的核心,获取大量数据是至关重要的。
作为机器人工程师和哥伦比亚大学创意机器实验室的主管,霍普·利普森(Hod Lipson)说,“数据是燃料,算法是引擎。”
趋势5 -- 获得市场份额的工具民主化
较大的公司将开始开源其算法和其他工具集,以获得市场份额。基于市场的数据和算法访问障碍将会减少,AI的新应用将会增加。通过民主化,获得有限或无法获得AI工具的小型公司将可以获得大量数据进行训练和使用复杂的AI算法。
Google的首席执行官Sundar Pichai对人工智能的民主化表示说,“我们大家可以做的最令人兴奋的事情之一就是揭开机器学习和AI的神秘面纱。所有人都可以获得访问权这一点是很重要的。”
此外,框架、SDK和API将成为所有主要参与者面向消费者开放使用的标准。基于SaaS和PaaS的模型将成为所有这些公司将遵循的商业模式。
趋势6 --人机交互将会改善
Siri和Alexa可能是两个最受欢迎的人机交互工具。与这些相似的更多基于机器人的解决方案将成为AI公司的入门级别的东西。例如,虽然机器已被编程用于语音分析和面部识别,但机器将能够基于您的声音的语调来识别您的心情,这叫做情感分析。
针对非消费者的解决方案的制造自动化和方方面面将成为第一类被改进的解决方案/应用。制造自动化将主要用于:使用包括自动化、机器人和先进制造在内的复杂技术而节省劳动成本。在2018年,针对非消费者解决方案有所改善,如在农业和医药领域执行任务的人机交互也将普遍存在。
趋势7 -- AI将开始缓慢但一定会影响所有的垂直领域
制造业、客户服务、金融,医疗保健和交通运输已经受到AI的影响。自动驾驶汽车已经预计到2018年上市。明年AI将影响更多的垂直行业。行业的简要示例以及人工智能将如何影响他们包括:
保险 -- AI将通过自动化改进索赔流程
法律 -- 自然语言处理可以在几分钟内总结数千页的法律文件,从而缩短时间并提高效率效率
公关与媒体 -- AI将帮助快速处理数据
教育 -- 虚拟导师的发展; AI辅助判卷; 适应性学习计划,游戏和软件; 由AI推动的个性化教育课程将改变学生和教师的互动方式
健康 -- 机器学习可用于创建更复杂,准确的方法来预测患者出现症状之前的疾病年数
正如100年前工业革命几乎改变所有事物一样,AI将在未来几年内改变所有行业。
趋势8 -- 安全,隐私,伦理与道德问题
人工智能的分支,如机器学习和大数据,都容易受到新兴的安全和隐私问题的影响。有时候在关键的基础设施起到重要作用。或者是一些与隐私问题有关的安全需求,如将银行帐户和健康信息保密,这些都将会对安全性研究产生更大的需求。2018年将是安全和隐私问题一定会得到解决的一年,未来,也可能会有新的发展。
人工智能的伦理也将是2018年的一个主要关注点。需要解决的伦理和道德问题包括“AI对人类的伤害或使人类受益”,“人担心机器人取代人类的可能性”等议题。特别是,关于“AI将被用于那些人类的同情心起重要作用的领域”如护士、治疗师或警察等工作范畴中。另一个需要处理的问题是自主武器。假如达到一定自主功能级别,与人类控制的武器不同,AI需要超越某些特定功能。
我们的看法
虽然人工智能已经存在了许多年,但我们今天所知道的AI仍然处于起步阶段。AI和其各种应用程序,从自动驾驶到虚拟个人助理以及执行,通常需要人工智能的任务的各种其他技术,已经有了大量相关的炒作。AI的生命周期刚刚开始,而且它有更长的路要走。
你是否同意我们的想法呢?AI的生命刚刚开始,它有更长的路要走, 那你对AI的预测又是什么?
如有任何意见或讨论,请随时通过“marketing@unfoldlabs.com”与Ashok或UnfoldLabs联系。
助教答疑摘抄(by 郑林峰 10月22日)
不要期望一门课可以学到所有的数学知识。
大家需要学的是机器学习(深度学习)的最小必要数学知识,例如概率、矩阵、凸优化......
花最短的时间,学习最必要的知识;在之后的使用过程中,再通过其他资料,不断地进行知识的完善和优化。
推荐大家上课前先将自己的知识放空,追随老师进行内容的学习。
程博士之前的课程,上过的学员都知道,老师知识层面的见解和讲述远超国内很多数学领域的研究者。听得我如痴如醉~
原标题:2018年AI 8大趋势:人工智能将助力Google、Facebook等大公司稳赢?
责任编辑: